-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.2 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.1
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Find People with ALS
People with ALS are people with:
A diagnosis of ALS with ICD-9-CM 335.20
A diagnosis of ALS with ICD-10-CM of G12.21
A pharmacy claim with a dispensing of edaravone
A pharmacy claim with a dispensing of riluzole
To add in the extraction, define a function to find outpatient, inpatient, and facilities claims with one of the diagnosis codes:
find_outpatient_dx <- function (source, year, icd_9, icd_10) {
db <- DBI:: dbConnect (RSQLite:: SQLite (),
glue:: glue ("/Shared/Statepi_Marketscan/databases/Truven/truven_{year}.db" ))
if (as.numeric (year) <= 14 ) {
events <- tbl (db, glue:: glue ("outpatient_dx_{source}_{year}" )) %>%
filter (dx %in% icd_9) %>%
select (enrolid, svcdate) %>%
mutate (enrolid = as.character (enrolid)) %>%
collect () %>%
distinct ()
} else {
events9 <- tbl (db, glue:: glue ("outpatient_dx9_{source}_{year}" )) %>%
filter (dx %in% icd_9) %>%
select (enrolid, svcdate) %>%
mutate (enrolid = as.character (enrolid)) %>%
collect () %>%
distinct ()
events10 <- tbl (db, glue:: glue ("outpatient_dx10_{source}_{year}" )) %>%
filter (dx %in% icd_10) %>%
select (enrolid, svcdate) %>%
mutate (enrolid = as.character (enrolid)) %>%
collect () %>%
distinct ()
events <- rbind (events9, events10)
}
events <- events %>%
select (enrolid, date = svcdate)
DBI:: dbDisconnect (db)
return (events)
}
find_inpatient_dx <- function (source, year, icd_9, icd_10) {
db <- DBI:: dbConnect (RSQLite:: SQLite (),
glue:: glue ("/Shared/Statepi_Marketscan/databases/Truven/truven_{year}.db" ))
if (as.numeric (year) <= 14 ) {
events <- tbl (db, glue:: glue ("inpatient_dx_{source}_{year}" )) %>%
filter (dx %in% icd_9) %>%
select (caseid) %>%
collect ()
} else {
events9 <- tbl (db, glue:: glue ("inpatient_dx9_{source}_{year}" )) %>%
filter (dx %in% icd_9) %>%
select (caseid) %>%
collect ()
events10 <- tbl (db, glue:: glue ("inpatient_dx10_{source}_{year}" )) %>%
filter (dx %in% icd_10) %>%
select (caseid) %>%
collect ()
events <- rbind (events9, events10)
}
events <- tbl (db, glue:: glue ("inpatient_core_{source}_{year}" )) %>%
filter (caseid %in% local (events$ caseid)) %>%
select (caseid, enrolid, admdate) %>%
mutate (enrolid = as.character (enrolid)) %>%
collect () %>%
inner_join (events, by = "caseid" ) |>
select (enrolid, date = admdate)
DBI:: dbDisconnect (db)
return (events)
}
find_facility_dx <- function (source, year, icd_9, icd_10) {
facility_db <- DBI:: dbConnect (RSQLite:: SQLite (),
glue:: glue ("/Shared/Statepi_Marketscan/databases/Truven/facilities_dbs/facilities_{year}.db" ))
events <- tbl (facility_db, glue:: glue ("facility_dx_{source}_{year}" )) |>
filter ((dx %in% icd_9 & dx_ver == 9 ) | (dx %in% icd_10 & dx_ver == 0 )) |>
select (enrolid, date = svcdate) |>
mutate (enrolid = as.character (enrolid)) |>
collect () |>
distinct ()
DBI:: dbDisconnect (facility_db)
return (events)
}
We’ll also want to find the RX events:
find_rx_events <- function (source, year, ndc_num) {
db <- DBI:: dbConnect (RSQLite:: SQLite (),
glue:: glue ("/Shared/Statepi_Marketscan/databases/Truven/truven_{year}.db" ))
events <- tbl (db, glue:: glue ("rx_core_{source}_{year}" )) %>%
filter (ndcnum %in% ndc_num) %>%
select (enrolid, svcdate) %>%
mutate (enrolid = as.character (enrolid)) %>%
collect ()
events <- events %>%
select (enrolid, date = svcdate)
DBI:: dbDisconnect (db)
return (events)
}
We’ll want to apply this in parallel, so define a functional version of these functions:
find_events <- function (args, icd_9, icd_10, ndc_num) {
source <- args[[1 ]]
year <- args[[2 ]]
table <- args[[3 ]]
if (table == "inpatient" ) {
events <- find_inpatient_dx (source, year, icd_9, icd_10)
} else if (table == "outpatient" ) {
events <- find_outpatient_dx (source, year, icd_9, icd_10)
} else if (table == "facility" ) {
events <- find_facility_dx (source, year, icd_9, icd_10)
} else if (table == "rx" ) {
events <- find_rx_events (source, year, ndc_num)
}
return (events)
}
We want to pull data from 2001 to 2021. Note that the facilities table does not exist for 2001:
conditions <- vector ("list" , length = 2 * 20 * 3 - 2 )
i <- 1
for (source in c ("ccae" , "mdcr" )) {
for (year in stringr:: str_pad (1 : 21 , width = 2 , pad = "0" )) {
for (table in c ("inpatient" , "outpatient" , "facility" , "rx" )) {
if (year != "01" | table != "facility" ) {
conditions[[i]] <- c (source, year, table)
i <- i + 1
}
}
}
}
Next, start the cluster and load packages and functions:
cluster <- makeCluster (56 )
clusterEvalQ (cluster, library (tidyverse))
[[1]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[2]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[3]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[4]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[5]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[6]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[7]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[8]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[9]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[10]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[11]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[12]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[13]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[14]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[15]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[16]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[17]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[18]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[19]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[20]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[21]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[22]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[23]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[24]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[25]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[26]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[27]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[28]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[29]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[30]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[31]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[32]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[33]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[34]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[35]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[36]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[37]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[38]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[39]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[40]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[41]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[42]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[43]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[44]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[45]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[46]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[47]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[48]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[49]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[50]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[51]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[52]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[53]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[54]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[55]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
[[56]]
[1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
[7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
[13] "grDevices" "utils" "datasets" "methods" "base"
clusterExport (cluster, c ("find_inpatient_dx" , "find_outpatient_dx" ,
"find_facility_dx" , "find_rx_events" ))
Define the desired values of icd_9
, icd_10
, and ndc_num
:
icd_9 <- c ("33520" )
icd_10 <- c ("G1221" )
redbook <- read_csv ("/Shared/Statepi_Marketscan/databases/Truven/redbook.csv" )
Rows: 386531 Columns: 34
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (26): NDCNUM, ORGBKCD, SIGLSRC, ORGBKFG, DESIDRG, MASTFRM, PKQTYCD, EXCL...
dbl (8): DEACLAS, GENERID, MAINTIN, PRODCAT, GENIND, THERCLS, PKSIZE, THERDTL
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
ndc_num <- redbook |>
filter (
stringr:: str_detect (tolower (GENNME), "edaravone" ) | stringr:: str_detect (tolower (GENNME), "riluzole" )
)
ndc_num <- ndc_num$ NDCNUM
als_events <- parLapplyLB (cluster,
conditions,
find_events,
icd_9 = icd_9, icd_10 = icd_10, ndc_num = ndc_num)
We are done with the cluster and we release those resources:
Reduce the als_events
table to the first observed date:
first_als_date <- als_events %>%
enframe () %>%
filter (purrr:: map_int (value, nrow) > 0 ) %>%
unnest (cols = "value" ) %>%
group_by (enrolid) %>%
summarize (als_date = min (date))
Which we then save for later use.
write_rds (first_als_date, "/Shared/lss_jsimmeri/als/first_als_date.rds" )
Find non-ALS Matches
Connect to the enrollment database to find enrollment summaries for everyone in Truven:
enrollment_db <- DBI:: dbConnect (
RSQLite:: SQLite (),
"/Shared/Statepi_Marketscan/databases/Truven/enrollment_dbs/all_enroll_01_21q4.db" )
And then pull the enrollment summaries for everyone in Truven:
enrollments <- tbl (enrollment_db, "all_enrollees" ) |>
collect ()
Pull out the cases:
als_enrollments <- enrollments |>
mutate (enrolid = as.character (enrolid)) |>
filter (enrolid %in% first_als_date$ enrolid)
For cases, substitute in the ALS diagnosis year for the last observed year and also remove anyone with less than a year of lookback:
als_enrollments <- als_enrollments |>
select (- last_year) |>
inner_join (
first_als_date |>
mutate (last_year = year (as_date (als_date))),
by = "enrolid"
) |>
filter (first_date <= (als_date - 365 )) |>
select (enrolid, dobyr, sex, first_year, last_year)
And controls:
control_enrollments <- enrollments |>
mutate (enrolid = as.character (enrolid)) |>
filter (! (enrolid %in% first_als_date$ enrolid))
Next, we want to match 5 controls to each case based on
Age
Sex
Enrollment start year
Enrollment end year
To do this, first group the ALS data and get the number of counts per stratum:
n_als <- als_enrollments |>
group_by (dobyr, sex, first_year, last_year) |>
summarize (
n_als = n (),
.groups = "drop"
)
And then join with the control_enrollments
tibble and sample 5 * n_als
:
set.seed (4287452 )
control_sample <- control_enrollments |>
group_by (dobyr, sex, first_year, last_year) |>
nest () |>
ungroup () |>
inner_join (n_als, by = c ("dobyr" , "sex" , "first_year" , "last_year" )) |>
mutate (
n_control = map_int (data, nrow),
n_to_sample = case_when (
n_als * 5 < n_control ~ n_als * 5 ,
n_als > n_control ~ n_control,
n_als < n_control ~ n_als
)
) |>
mutate (sample = map2 (data, n_to_sample, sample_n)) |>
select (dobyr, sex, first_year, last_year, starts_with ("n" ), sample)
And then expand that back out:
control_sample <- control_sample |>
unnest (sample) |>
select (enrolid, dobyr, sex, first_year, last_year)
And then save the full cohort:
cohort <- bind_rows (
als_enrollments |>
mutate (als = TRUE ),
control_sample |>
mutate (als = FALSE )
)
write_rds (cohort, "/Shared/lss_jsimmeri/als/cohort.rds" )
Session Info
R version 4.1.3 (2022-03-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /cvmfs/argon.hpc.uiowa.edu/2022.1/apps/linux-centos7-x86_64/gcc-9.4.0/intel-oneapi-mkl-2022.0.2-s35g6hp/mkl/2022.0.2/lib/intel64/libmkl_gf_lp64.so.2
locale:
[1] C
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] lubridate_1.9.2 forcats_1.0.0 stringr_1.5.0 dplyr_1.1.2
[5] purrr_1.0.1 readr_2.1.4 tidyr_1.3.0 tibble_3.2.1
[9] ggplot2_3.4.2 tidyverse_2.0.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.10 dbplyr_2.3.3 pillar_1.9.0 compiler_4.1.3
[5] tools_4.1.3 bit_4.0.4 digest_0.6.29 memoise_2.0.1
[9] RSQLite_2.2.18 timechange_0.1.1 jsonlite_1.8.4 evaluate_0.16
[13] lifecycle_1.0.3 gtable_0.3.1 pkgconfig_2.0.3 rlang_1.1.0
[17] DBI_1.1.3 cli_3.6.1 yaml_2.3.5 xfun_0.32
[21] fastmap_1.1.0 withr_2.5.0 knitr_1.40 generics_0.1.3
[25] vctrs_0.6.2 htmlwidgets_1.5.4 hms_1.1.2 bit64_4.0.5
[29] grid_4.1.3 tidyselect_1.2.0 glue_1.6.2 R6_2.5.1
[33] fansi_1.0.4 vroom_1.6.3 rmarkdown_2.16 blob_1.2.3
[37] tzdb_0.3.0 magrittr_2.0.3 ellipsis_0.3.2 scales_1.2.1
[41] htmltools_0.5.3 colorspace_2.0-3 utf8_1.2.3 stringi_1.7.12
[45] munsell_0.5.0 cachem_1.0.6 crayon_1.5.1